Part Number Hot Search : 
TC4424 AK2331 6N60C LN2003A M68710L SG6516SZ PSD03C 508AF
Product Description
Full Text Search
 

To Download IRF1405PBF-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet this stripe planar design of hexfet ? power mosfets utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g v dss = 55v r ds(on) = 5.3m ? i d = 169a  description  www.irf.com 1  advanced process technology  ultra low on-resistance  dynamic dv/dt rating  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free benefits to-220ab irf1405pbf typical applications  industrial motor drive absolute maximum ratin g s parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj dv/dt peak diode recovery dv/dt  v/ns t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter t yp . max. units r jc junction-to-case ??? 0.45 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 330 2.2 20 max. 169  118  680 560 see fig.12a, 12b, 15, 16 5.0 s d g d 
  2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   starting t j = 25c, l = 0.11mh r g = 25 ? , i as = 101a. (see figure 12).  i sd 101a, di/dt 210a/s, v dd v (br)dss , t j 175c  pulse width 400s; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a.  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. s d g electrical characteristics @ tj = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 ??? ??? v ? v ( br ) dss / ? t j breakdown voltage temp. coefficient ??? 0.057 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.6 5.3 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 69 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 170 260 q gs gate-to-source charge ??? 44 66 nc q gd gate-to-drain ("miller") charge ??? 62 93 t d(on) turn-on delay time ??? 13 ??? t r rise time ??? 190 ??? t d(off) turn-off delay time ??? 130 ??? ns t f fall time ??? 110 ??? l d internal drain inductance between lead, nh 6mm (0.25in.) l s internal source inductance from package and center of die contact c iss input capacitance ??? 5480 ??? c oss output capacitance ??? 1210 ??? c rss reverse transfer capacitance ??? 280 ??? pf c oss output capacitance ??? 5210 ??? c oss output capacitance ??? 900 ??? c oss eff. effective output capacitance ???1500??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current (body diode) a i sm pulsed source current (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 88 130 ns q rr reverse recovery charge ??? 250 380 nc t on forward turn-on time ??? ??? 169  ??? ??? 680 4.5 ??? ??? ??? ??? 7.5 intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 25v, i d = 101a i d = 101a v ds = 44v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz, see fig.5 v gs = 20v mosfet symbol showing the integral reverse v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v p-n junction diode. t j = 25c, i s = 101a, v gs = 0v  t j = 25c, i f = 101a di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 101a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 44v, v gs = 0v, t j = 150c v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 10v  v dd = 38v i d = 101a r g = 1.1 ? v gs = -20v
  www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 4 6 8 10 12 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 169a
  4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 60 120 180 240 300 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 101a v = 27v ds v = 44v ds 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 0 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd
  www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds 90% 10% v gs t d(on) t r t d(off) t f   
 1     0.1 %      


 + -   fig 10a. switching time test circuit fig 10b. switching time waveforms 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 40 80 120 160 200 t , case temperature ( c) i , drain current (a) c d limited by package
  6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -
 fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 14. threshold voltage vs. temperature 25 50 75 100 125 150 175 0 200 400 600 800 1000 1200 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 41a 71a 101a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) , v a r i a c e ( v ) i d = 250a
  www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 101a
  8 www.irf.com  
       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - -        ?     ?       ?


     
!   ? !"#   ? $ %  ? !"!&'     ()  %(

(% *       +
(!'! ,     for n-channel  hexfet ? power mosfets
  www.irf.com 9 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 05/2010 to-220ab packages are not recommended for surface mount application. 
   
      
   
      
                           ! "" #$ %&&!'()* )#$! +&# #$ #$,#-% !& "!%, . /!!"      " "     0  notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRF1405PBF-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X